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Aims

Aims

Our project aims at exploiting different sources of high quality information,
yielding more accurate and timely predictions of financial prices than those
produced by existing methodologies.

We leverage crypto-asset prices as well as related social media information
with a novel data integration methodology based on graphical and
dependence models producing accurate predictions and assessments of
financial risks.
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Aims

Motivations

Statistical models for financial asset pricing and forecasting might generate
incomplete and not accurate enough results, if built on a single source of
information.

On the one hand, due to the recent events affecting the world population and
politics (i.e. the Covid-19 pandemic and lockdown, the war in Ukraine, etc.)
market unpredictability is making financial forecasts based on historical asset
prices less reliable.

On the other hand, social media data are generated by users on a voluntary
basis and may not capture information about the entire population.
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Methodology

Methodology

Our approach is based on graphical and dependence models, which allow us
to integrate asset prices with textual information gathered from social media
platforms.

In contrast to other “black-box” approaches, graphical and dependence
models allow a transparent and immediate interpretation of results.

Luciana Dalla Valle (University of Plymouth) Data Integration for Cryptocurrencies September 21, 2022 4 / 18



Methodology

Methodology

Our approach is based on graphical and dependence models, which allow us
to integrate asset prices with textual information gathered from social media
platforms.

In contrast to other “black-box” approaches, graphical and dependence
models allow a transparent and immediate interpretation of results.

Luciana Dalla Valle (University of Plymouth) Data Integration for Cryptocurrencies September 21, 2022 4 / 18



Methodology Graphical models

Graphical models

Graphical models are probabilistic tools expressing the conditional
dependence structure between random variables.

Graphs are an intuitive way of representing and visualising the
relationships between many variables.

A graph allows us to abstract out the conditional independence
relationships between the variables from the details of their parametric
forms.

Graphical models allow us to define general message-passing algorithms that
implement probabilistic inference efficiently (Maathuis, 2018).
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Methodology Graphical models

Dependence models

Dependence models (specifically, vine copulas) are mathematical tools that
allow the separation between the marginal distributions and their dependence
structure and, in some particular cases, they can be represented via graphical
models.

Vine copulas use bivariate copulas as building blocks to define highly flexible
multivariate distributions that are represented via graphical models as nested
set of connected trees.

The flexibility of vine copulas allows us to overcome many of the issues
associated with commonly used distributions by allowing different complex
asymmetric dependencies and tail behaviours to be modelled (Czado,
2019).
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Methodology Data Integration

Data Integration Methodology

We apply the methodology to integrate crypto-asset prices and social
media data, extracted from platforms such as Twitter and Google Trends,
producing precise predictions and measuring financial risk accurately.

Bitcoin data time horizon: February–June 2021

We implement time series to model the data dynamics of cryptocurrencies
and online gathered information.

Subsequently, we use graphical and dependence models, such as vine copulas,
to capture the dependence structure between variables.
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Preliminary results Google trends

Preliminary results: Google trends
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Figure: Number of Google Trends searches by keyword (“Bitcoin” on the left and “btc”
on the right).
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Figure: Map of the number of Google Trends searches by country.

Luciana Dalla Valle (University of Plymouth) Data Integration for Cryptocurrencies September 21, 2022 9 / 18



Preliminary results Twitter

Preliminary results: Twitter
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Source: https://www.kaggle.com/kaushiksuresh147/bitcoin−tweets

Figure: Number of Tweets containing the hashtags “Bitcoin” and “btc”.

Luciana Dalla Valle (University of Plymouth) Data Integration for Cryptocurrencies September 21, 2022 10 / 18



Preliminary results Twitter

Preliminary results: Twitter
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Figure: Top locations of tweets containing the hashtags “Bitcoin” and “btc”.
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Preliminary results: Twitter
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Figure: Top tweet sources for users tweeting about “Bitcoin” and “btc”.
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Preliminary results: Twitter
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Figure: Top tweets containing “Bitcoin” and “btc”.
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Figure: Wordcloud for tweets containing “Bitcoin” and “btc”.
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Figure: Most common positive and negative words in tweets containing the hashtags
“Bitcoin” and “btc”.
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Figure: Histogram of Bing sentiment scores for tweets with hashtags “Bitcoin” and
“btc”.
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Next steps Time series analysis

Next steps

1 Time series analysis of crypto-asset
prices and social media information

2 Data integration using graphical
and dependence models

3 Calculate predictions based on the
data integration model

afinn
bing

G
oogle

n_tw
eets

P
riceU

S
D

Feb Mar Apr May Jun

0.0
0.3
0.6
0.9
1.2

0.00
0.25
0.50
0.75
1.00

25
50
75

100

0

2000

4000

6000

40000

50000

60000

Date

m
ar

gi
na

ls

Bitcoin time series plots

Luciana Dalla Valle (University of Plymouth) Data Integration for Cryptocurrencies September 21, 2022 17 / 18



Next steps Time series analysis

References

Czado, C. (2019). Analyzing dependent data with vine copulas. Lecture Notes in
Statistics, Springer, 222.

Maathuis, M., Drton, M., Lauritzen, S., & Wainwright, M. (Eds.). (2018).
Handbook of graphical models. CRC Press.

Luciana Dalla Valle (University of Plymouth) Data Integration for Cryptocurrencies September 21, 2022 18 / 18


	Aims
	Methodology
	Graphical models
	Data Integration

	Preliminary results
	Google trends
	Twitter

	Next steps
	Time series analysis


