Khowaja, K., Saef, D., Sizov, S., & Härdle, W. K. (2020). Data Analytics Driven Controlling: bridging statistical modeling and managerial intuition. Available at arXiv: arXiv:2012.06577 |
Ben Amor, S., Althof, M., & Härdle, W. K. (2021). FRM Financial Risk Meter for Emerging Markets. Available at arXiv: https://arxiv.org/abs/2102.05398 |
Ren, R., Lu, M., Li Y., & Härdle, W. K. (2021). Financial Risk Meter Based on Expectiles. Available at SSRN: http://dx.doi.org/10.2139/ssrn.3809329; |
Eccles, P., Grout, P., Siciliani, P., & Zalewska, A. A. (2021). The impact of machine learning and big data on credit markets. Available at SSRN: 3890364 |
Paraschiv, F., Schmid, M., & Wahlstrøm, R. R. (2021). Bankruptcy Prediction of Privately Held SMEs Using Feature Selection Methods. Available at SSRN 3911490. |
Wahlstrøm, Ranik Raaen, Florentina Paraschiv, and Michael Schürle (2021) "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions." Computational Economics: 1-38. https://link.springer.com/article/10.1007/s10614-021-10113-w |
Jalan, A., Matkovskyya, R., Potì, V. (2021) Shall the winning last? A study of recent bubbles and persistence. https://doi.org/10.1016/j.frl.2021.102162 |
Klochkov Y, Härdle WK, Petukhina A, Zhivotovskiy N, (2021) Robustifying Markowitz, IRTG 1792 Discussion Paper 2021-018. https://www.wiwi.hu-berlin.de/de/forschung/irtg/results/discussion-papers/discussion-papers-2017-1/irtg1792dp2021-018/view |
Liu, F., Packham, N., Lu, M. J., & Härdle, W. (2021). Hedging cryptos with Bitcoin futures (No. 2022-001). IRTG 1792 Discussion Paper. https://www.wiwi.hu-berlin.de/de/forschung/irtg/results/discussion-papers/discussion-papers-2017-1/irtg1792dp2022-001.pdf |
Hu, J., & Härdle, W. K. (2021). Networks of News and the Cross-Sectional Returns. Available at SSRN 3904012. |
Wang, R., Althof, M., & Härdle, W. K. (2021). A financial risk meter for China. Available at SSRN 3965498. |
Matic, J. L., Packham, N., & Härdle, W. K. (2021). Hedging cryptocurrency options. Available at SSRN 3968594. |
Saef, D., Nagy, O., Sizov, S., & Härdle, W. K. (2021). Understanding jumps in high frequency digital asset markets. Available at SSRN 3944865. |
MB Lin, K. Khowaja, CYH Chen, WK Härdle (2021) Blockchain mechanism and distributional characteristics of cryptos , Advances in Quantitative Analysis of Finance & Accounting (AQAFA), Vol. 18, DOI:10.6293/AQAFA.202112_(18).0006 |
W. Li, F. Paraschiv, G. Sermpinis (2021) A Data-driven Explainable Case-based Reasoning Approach for Financial Risk Detection Available at SSRN: https://ssrn.com/abstract=3912753, to appear in Quantitative Finance |
K. Khowaja, M. Shcherbatyy, WK Härdle (2021) Surrogate Models for Optimization of Dynamical Systems, "Foundations of Modern Statistics", Springer Proceedings in Mathematics & Statistics, to appear 2021 |
F. Liu, N. Packham, M-J Lu, WK Härdle (2021) Hedging Cryptos with Bitcoin Futures. Available at SSRN: https://ssrn.com/abstract=4150849or |
M.Azzone, E.Barucci, G.Giuffra Moncayo, D.Marazzina (2022), A machine learning model for lapse prediction in life insurance contracts, Expert Systems with Application, Vol. 191: 116261. https://doi.org/10.1016/j.eswa.2021.116261. |
E.Barucci, G.Giuffra Moncayo, D.Marazzina (2022), Cryptocurrencies and stablecoins: a high-frequency analysis, Digital Finance. https://doi.org/10.1007/s42521-022-00055-9 |
V. Poti (2022) Discussion on: “Programmable money: next generation blockchain based conditional payments” by Ingo Weber and Mark Staples. Digit Finance. |
A. Kabasinskas (2022) Discussion on: “Programmable money: next generation blockchain based conditional payments” by Ingo Weber and Mark Staples. Digital Finance (2022). https://doi.org/10.1007/s42521-022-00062-w |
O. Filipovska (2022) Discussion on: “Programmable money: next generation blockchain based conditional payments” by Ingo Weber and Mark Staples. Digital Finance(2022). https://doi.org/10.1007/s42521-022-00065-7 |
J. Osterrieder (2022) Discussion on: “Programmable money: next generation blockchain based conditional payments” by Ingo Weber and Mark Staples. Digital Finance(2022). https://doi.org/10.1007/s42521-022-00063-9 |
A.M. Rodrigues, R. Hu, (2022) Discussion on: “Programmable money: next generation blockchain based conditional payments” by Ingo Weber and Mark Staples. Digital Finance. https://doi.org/10.1007/s42521-022-00061-x |
M.C. Burda (2022) Discussion on: “Programmable money: next generation blockchain-based conditional payments” by Ingo Weber and Mark Staples. Digital Finance. https://doi.org/10.1007/s42521-022-00064-8 |
W. Li, WK Härdle, S. Lessmann (2022) A Data-driven Case-based Reasoning in Bankruptcy Prediction. Available at SSRN |
K. Khowaja, C.Huang, WK Härdle (2022) Uniform Confidence Bands for Generalized Random Forests (April 8, 2022). Available at SSRN: https://ssrn.com/abstract=4079006 |
F. Paraschiv,L. Wei, (2022) Modelling the evolution of wind and solar power infeed forecasts. In: Journal of Commodity Markets, 2022 (25): 100189 https://doi.org/10.1016/j.jcomm.2021.100189 |
R. Wahlstrøm, F. Paraschiv, M. Schürle (2022) A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions. In: Computational Economics, 2022 (59): 967-1004 https://doi.org/10.1007/s10614-021-10113-w |
N. Bussmann, A. Tanda, E. P. Y. Yu (2022). Can ESG Shape Cost of Capital? A Bibliometric Review and Empirical Analysis Through ML. A Bibliometric Review and Empirical Analysis Through ML (July 27, 2022). https://dx.doi.org/10.2139/ssrn.4173890 |